
Using a Highly Dynamic Language for Development
Advantages of and lessons learned from using Common Lisp in games

Nicolas Hafner

Shirakumo Games

Abstract

Games face an interesting challenge. They require rapid
development, are highly interactive, and pose hard real-
time performance constraints. While smaller games these
days have also been developed in dynamic languages
such as Python or Lua, traditionally engines are still
written in static languages like C++ and C, with an
additional scripting language on top to handle game-
play mechanics. Common Lisp offers an environment
that’s both dynamic and performant enough to allow
for a full stack game development system that is highly
favourable to fast iteration and modular design.

Keywords: Common Lisp, game development, dynamic
languages, object orientation

1 Introduction

Video games pose an interesting engineering chal-
lenge. They are highly dynamic in their nature, as
users can perform various, sometimes far-reaching
changes to the program at any time, and yet they
must remain responsive under hard real-time con-
straints. Additionally, the development of games
itself is highly dynamic, as changes to the game re-
quire constant testing and refinement. Long pauses
between making a change and being able to prop-
erly evaluate its effects can gravely discourage test-
ing, which leads to a much worse product.

A typical approach to solve this set of constraints
is to use multiple languages in combination. A
rather low-level language like C++ or C to han-
dle the “core engine”, and an integrated scripting
language like Lua to handle gameplay logic. How-
ever, this approach has multiple issues of its own:
it can be hard to distinguish which parts should be
a part of the core engine, and which should not.
The scripting cannot integrate with everything the
engine offers, as an explicit interface has to be de-
signed that can deal with the scripting language’s
own data types and routines. For performance rea-
sons a highly dynamic part may also need to be
lowered down into the static language, making iter-
ation much slower and harder to deal with.

Finally, the lack of runtime debugging means
that any problems appearing in the core engine of-
ten lead to a crash of the entire program, which
makes diagnosing and fixing the issue much harder.
This difficulty often leads to defensive programming
strategies, where errors are simply ignored or oth-
erwise coerced, leading them to cause issues further
down the line, complicating debugging of the final
product even more.

In this paper we instead take a holistic approach,
using Common Lisp for the full stack of both the
core engine and the gameplay tools and mechanics.
Common Lisp is a highly dynamic language, allow-
ing runtime redefinition of functions, variables, and
classes, even to the point of completely reloading or
changing an underlying library or system while the
program is being executed. Yet, despite this dy-
namism, Common Lisp is a compiled language that
takes great care to support the writing of efficient
code. Highly optimising compilers like SBCL allow
you to write fast code without having to drop down
into another language.

We explore some of the aspects of Common Lisp
that make it particularly suited for games in detail,
and also discuss some of the pitfalls we encountered
and how to combat them.

2 Related Works

Please see our prior work on using Common Lisp for
game development and real-time computer graph-
ics[2][3]. As this is otherwise primarily an overview
of Common Lisp facilities and our experiences, we
do not compare this paper to other work.

3 Modularity Through Mixins

The Common Lisp Object System (CLOS) has a
couple of traits that remain rare in programming
languages in use today, but make for excellent tools
to support game development. Relevant to this sec-
tion are serialised multiple inheritance and the stan-
dard generic function method combination.

In CLOS methods are not attached to classes,
but are instead parts of a generic function. Meth-

1



3 Modularity Through Mixins 2

ods “specialise” on one or several of the required
arguments of the function to a class. When the
generic function is called, the system must first de-
termine the set of “applicable methods”. This set
depends on the method combination used by the
generic function. For brevity’s sake, we will only
look at the standard method combination here.

The standard method combination offers meth-
ods in four flavours: primary, :before, :after,
and :around. These methods are grouped together,
then filtered for applicable methods by checking
whether the arguments passed to the generic func-
tion match their specialised classes, and finally sorted
by how specific the specialisations are to the argu-
ments passed. With this completed set, the meth-
ods are invoked as illustrated in Figure 1.

Fig. 1: The standard method combination be-
haviour illustrated

As a brief example, let us consider Listing 1.
Here we define a generic function of two arguments
called handle, as well as three methods. All of the
methods require the first argument to be a subclass
of tick. Method 1 and 2 also require the second
argument to be a subclass of player, and method
3 a subclass of enemy.

(defgeneric handle (event object))

(defmethod handle ((ev tick) (object player))) ; 1
(defmethod handle :before ((ev tick) (object player))) ; 2
(defmethod handle ((ev tick) (object enemy))) ; 3

Listing 1: A brief example of method definition

When handle is now called with a tick and
a player instance, first the method 2 is executed,
followed by the method 1. Method 3 is ignored, as
it does not match the arguments.

This method combination mechanism only re-
ally shines once we consider inheritance and espe-
cially multiple inheritance and the arising “mixin
classes”. Let us now define the classes we used for

the previous listing. Listing 2 shows five classes be-
ing defined, with tick being a subclass of event,
and player and enemy being subclasses of
physics-object.

(defclass event () ())
(defclass tick (event) ())

(defclass physics-object () ())
(defclass player (physics-object) ())
(defclass enemy (physics-object) ())

Listing 2: A brief example of method definition

We’ll now also change the second method to spe-
cialise on the physics-object instead of player.
For example, since both player and enemy are mov-
ing, we could be handling the collision resolution
there. If we now perform the same call from before,
Methods 2 and 1 will still be invoked. However,
unlike before, if we call the function with tick and
enemy, now methods 2 and 3 will be invoked, in-
stead of only method 3.

(defmethod handle :before ((ev tick) (object moving-entity)))

Listing 3: The updated second method definition

In other OOP paradigms a similar behaviour
can usually be achieved by calling the superclass’
method with super, but notice here that the be-
haviour of method 2 does not require changing any-
thing about the other methods or subclasses. It
thus remains wholly encapsulated in its own be-
haviour.

So far so good. Now imagine that we decide
enemies, should emit a light so that they’re always
visible. To implement this, we’re going to define a
new class, emitter, and define the light flicker be-
haviour in a new handle method as shown in List-
ing 4.

(defclass emitter () ())

(defmethod handle :before ((ev tick) (object emitter)))

Listing 4: The new class and method to handle
light flickering

To make the enemy adopt this new behaviour,
all we need to do is add emitter to the enemy class’
superclass list. Thanks to the method combina-
tion, calls to handle will now include the emitter’s
method, and we have achieved the combination of
the two behaviours.

(defclass enemy (physics-object emitter) ())

Listing 5: The updated enemy class definition

The order of the superclasses here is important.
Classes that appear earlier in the list have “prece-
dence” and are thus considered to be “more specific”



4 Conditions, Handlers, and Restarts 3

when determining the set of applicable methods.
By having emitter appear after physics-object,
we ensure that the emitter’s :before method runs
after that of physics-object, ensuring the colli-
sions have already resolved properly once we con-
sider the lighting update.

Not having the emitter be a subclass of
physics-object ensures that we can also use it as a
superclass for other things such as completely static
lanterns that have no business having any interac-
tivity.

As an example from our actual code base, as of
writing, the player class has 8 direct superclasses
whose behaviours are combined together with the
player’s own. This combination of behaviours al-
lows encapsulating different parts and re-using them
in many cases. Keep in mind, too, that all of these
classes and methods can be redefined at runtime to
change, add, and remove behaviours from an object
while the game is still running.

We’ve also developed a system to tie shaders
into the CLOS inheritance model, allowing us to at-
tach GPU rendering behaviour to classes, and com-
bine it in a similar fashion[3].

One issue that crops up when segregating be-
haviours into such small compartments is that you
might not have enough control over the combination
of them. The standard method combination offers
no fine-grained control to exclude or reorder meth-
ods for a specific specialisation of an argument. One
could devise their own method combination strat-
egy to allow this kind of specialised behaviour, how-
ever we are not convinced that this would not lead
to an ultimately even more confusing design.

While the standard method combination and
mixins offer a great deal of flexibility out of the
gate, great care must still be taken when designing
the overall class hierarchy and function protocol.
Otherwise behaviours will not combine cleanly and
lead to strange bugs, or might not combine properly
at all.

4 Conditions, Handlers, and Restarts

Debugging is of course an important aspect of pro-
gramming, but this is even more so the case when
the system can be redefined and changed during
runtime. Fortunately, Common Lisp offers an in-
credibly capable system to deal with runtime bugs.
This system comes in three parts, only one of which
is commonly found in other languages.

The first part is what’s called “conditions”, or
Exceptions in other languages. Conditions are “sig-
nalled” (thrown) and can then be “handled” (caught)
by a piece of code lower down in the stack. When
handled, the stack unwinds to the point of the han-
dler, and the matching handler function is invoked
to resolve the issue. For our purposes here, Com-

mon Lisp offers two types of conditions: warnings
and errors. When a warning is signalled that is
not handled further up the stack, it simply van-
ishes and execution continues from the signalling
point unimpeded. If an error remains unhandled,
a dynamic debugger is invoked instead and the sig-
nalling thread is paused. From there one of the
unique features comes to shine.

Restarts are on first look similar to conditions
and handlers. When a restart is established, it sets
an unwind point for a particularly named restart
with a function to be called when that restart is
triggered. Restarts themselves can be triggered via
a function called invoke-restart, which can also
pass along arguments for the restart function. The
idea with restarts is to provide one or more ways
for execution to continue or recover safely from an
error. When the debugger is invoked from an un-
handled error, it now has access to a list of active
restarts on the stack, and can invoke one of them
dynamically as the user sees fit.

This means that unlike traditional languages where
an error causes a stack trace and then tries to con-
tinue or simply crashes, in Common Lisp execution
is halted, waiting for you to analyse and potentially
fix the bug. Once you’re confident you know what
to do or have solved the issue, you can pick from one
of several ways to continue the execution from the
error. This leaves the program running at all times
and means you don’t need to worry about long re-
compilation times or setup times to reproduce the
error, you can immediately continue where you left
off.

The debugger also allows you to evaluate expres-
sions at runtime while in a particular stack frame,
allowing access to local variables in the process.
Since the Common Lisp runtime includes the full
compiler suite at all times, these expressions can be
arbitrary Lisp code, allowing for far more invasive
exploration of the bug and changes to the environ-
ment than easily possible with traditional out-of-
process debuggers.

The final piece is the existence of handler-bind.
This is a type of handler for conditions, but unlike
the regular handlers that cause the stack to unwind,
these handlers are invoked on top of the stack of
where the condition was signalled. As such they
have full access to the dynamic environment at error
point. In fact, this is also how the top level debugger
is invoked. However, with handler-bind you can
automate the error resolution and avoid requiring
user input.

A system with well-designed recovery points through
restarts can then be set up to automatically recover
from most errors in a way much more refined than
traditional Exceptions, as there is an inversion of
control.



5 Optimisation 4

(defmethod render ((scene scene))
(for ((object in scene))

(with-simple-restart (continue)
(render object))))

(defmethod render ((main main))
(handler-bind ((error (lambda (condition)

(invoke-restart 'continue))))
(render (scene main))))

Listing 6: Simplified code illustrating the control
inversion of restarts

In Listing 6 we show two simple methods, the
first to render a scene, which simply iterates over
each object in the scene and establishes a continue
restart around the call to render the object. When
this restart is invoked, the stack unwinds to within
the for and then simply continues with the next
object.

If we now call render on a scene directly and
an error occurs, the debugger gets invoked as usual.
But this time, we can invoke the continue restart
from the debugger to skip rendering the object. We
could also define a “retry” restart to simply retry
rendering the object as well, if we wanted to.

However, importantly, for the main render
method, this restart is automatically invoked, en-
suring that any potential crashes at runtime of the
game are gracefully ignored. This handler could
also be defined elsewhere even higher up the stack,
or only invoke the restart under special conditions.

Restarts and handlers are fantastic tools to cre-
ate a more error friendly environment and to recover
from unfavourable situations. Combined with the
dynamic debugger and runtime compilation envi-
ronment, these tools make debugging problems and
evolving a system over time a lot easier.

5 Optimisation

A frequent problem with highly dynamic language
is optimisation, as the dynamic nature of the lan-
guage prohibits making assumptions at compile time,
forcing repeated runtime dispatching. The focus on
safety will also insert bounds checks and similar as-
sertions into the code, which can have a big impact
on runtime in the hot loop.

To help with these issues, Common Lisp includes
several tools in the form of sorts of “compiler promises”.
You can use a declaration to promise to the compiler
that a variable’s value assumes a certain type. The
compiler can then use this promise to perform in-
ference and eliminate runtime dispatching. SBCL is
often times good enough at automatically inferring
the types to eliminate much of runtime dispatch on
its own, but for highly optimised functions, declar-
ing the types manually can be very beneficial still.

Additionally, Common Lisp offers several com-
piler tuning declarations. For instance, increasing
the speed switch to its maximum will tell the com-

piler to try and optimise the code as much as it
can. SBCL will then also emit warnings about cases
where it doesn’t have sufficient information to elimi-
nate dispatch, or where it must allocate on the heap.
Using this extra information the programmer can
then refactor the code or add additional promises
to ensure the compiler can generate efficient code.

Another switch is the safety switch, which when
set to its minimum will tell the compiler to avoid
inserting safety checks such as runtime type checks,
bounds checks, or other features that typically help
catch bugs. Naturally this is a dangerous option,
as the generated code now becomes as unsafe as C
or assembly code, and misuse of functions declared
with this option can lead to memory corruptions.

You can also declare the type of a function, to
ensure that the compiler can infer return values
and arguments across function boundaries. SBCL’s
block compilation feature, when activated, also al-
lows it to reason across function boundaries within
the same compilation unit on its own.

Finally you can also declare functions to be inline,
allowing the compiler to inline the definitions at call
sites. This comes with the usual advantage of aid-
ing inference and removing call overhead, but does
hamper dynamism, as a change to an inlined func-
tion now requires recompiling call sites as well.

When focusing on the SBCL implementation,
there are several other optimisations that can be
done. SBCL offers full access to its code optimisa-
tion facilities and even its assembler routines. With
enough effort, code can be optimised on the assem-
bly level, and one could even emit special assembly
instructions where needed. Some libraries already
make use of these systems to speed up computa-
tions, but we have not touched them much ourselves
due to a lack of time so far. We do however make use
of the disassemble function to check the generated
assembly of functions, as another aid in optimisa-
tion. We also make use of the integrated statistical
profiler to observe the runtime of the game and de-
termine choke points.

These techniques mostly focus on type dispatch
within a function, with special focus on arithmetic
functions. Dispatch for generic functions cannot
be eliminated like this, and especially generic func-
tions with a lot of methods attached or complicated
method signatures can become a significant choke
point.

This can be largely combated with traditional
techniques of simplifying method signatures, split-
ting up generic functions, or rewriting them into
statically dispatching functions that can be inlined
to take advantage of type inference. We are also
investigating an alternate dispatch technique out-
lined by Robert Strandh[4] that should significantly
improve generic function dispatch time, potentially
even outperforming traditional vtable based approaches



7 Conclusion 5

as used in C++ or Java.
While all these opportunities mean that fast code

can be written in SBCL, the default is still on the
side of safety over performance, something we con-
sider an ultimately good thing. Fully optimising
code on the level of C, C++, or assembly requires
significant, but not insurmountable work.

6 Garbage Collection

Being such a highly dynamic language, it’s unavoid-
able that a garbage collector be involved. This can
be problematic for games where a GC cycle can eas-
ily eclipse the time budget of a single frame. There
already exists a breadth of literature on the topic
of GC types, GC tuning, etc. out there so we will
not go into a debate on the nature of GC or its
drawbacks and advantages here. Instead we will fo-
cus on the specific issues we have encountered and
what we’ve done to mitigate them.

The GC we use is SBCL’s default GC, a genera-
tional, compacting, single-threaded stop-the-world
collector. We do hope that SBCL will receive a bet-
ter GC such as the Memory Pool System[1] at some
point, but for now we’ve been focusing on minimis-
ing garbage production in our code to avoid fre-
quent and extensive GCs.

Garbage can be minimised in a number of ways,
the most general being object pooling, or in other
words manual garbage collection. By allocating
known needed objects ahead of time and simply re-
cycling them, we can avoid generating a lot of inter-
mittent garbage. Common Lisp gives us some very
useful tools here that make this process a lot easier.

For instance, we can ask the compiler to allocate
a number of objects on the stack by using a declara-
tion ((declare (dynamic-extent x))). However,
this only works if the compiler can know ahead of
time what size the object is, meaning only fixed size
arrays and known structs can be stack allocated.
Furthermore, stack space is much more limited, so
bigger allocations still have to happen on the heap.

For cases where the object is a class instance,
simply too big for the stack, or has to escape the
stack sometimes, we can still easily cache the in-
stance locally by using load-time-value.
load-time-value is a special operator that causes
the form it wraps to be executed when the code is
first loaded into the system, and then puts the re-
sult of that executed form in the place in the code
the load-time-value was at. This effectively cre-
ates an anonymous global variable where the object
is stored, which is then put in place of the original
load-time-value.

This trick is very useful when we know the code
path is only ever accessed from one thread at a time.
Multi-threaded schemes would need to employ more
complex methods.

Another point where load-time-value becomes
very useful is when objects are said to be immutable,
and their construction arguments are known at com-
pile time. In this case, we can define a “compiler
macro” which is a macro that is executed to re-
place a call to a particular function. This compiler
macro can then analyse the arguments to the func-
tion at compile-time and choose to substitute the
call with a load-time-value form if all arguments
can be determined statically. This then avoids the
construction and allocation of the object, or even
the entire computation of the function at runtime
in a, to the user, completely transparent fashion.

In our UI toolkit Alloy we use this trick exten-
sively to avoid the allocation of colour values, sizes,
and dimensional units.

Even with all of these tricks, it remains very
hard to completely eliminate allocations, as other
parts such as boxing of values or generation of bignums
can cause allocations in spots where it isn’t imme-
diately obvious. So far we have managed to keep
the game running smoothly enough by offloading
big GC cycles to load screens and transitions, but
it is clear that bigger games do need additional work
put into them to optimise them for garbage man-
agement.

7 Conclusion

The expressiveness of the Common Lisp Object Sys-
tem allows for rapid changes in game object be-
haviour, as well as the creation of reusable pieces
of behaviour that can often be seamlessly combined
together. With extensions to the Meta Object Pro-
tocol, this can even be extended to graphics render-
ing routines and shaders.

The presence of the entire compiler environment
at runtime allows the developer to change any part
of the game while it is running. This is especially
feasible thanks to the presence of the restarts and
interactive debugger, which allow the game to re-
cover from a bug without having to crash and restart
the entire system.

While these features offer great amounts of flexi-
bility, there is a performance cost to be paid. Many
of these performance penalties can be avoided or
circumvented with careful planning and design, but
often by sacrificing some of the dynamism. These
optimisations also come at a greater development
cost.

We believe that, since these optimisations can
be performed gradually over time and because no
optimisation opportunities are fundamentally ex-
cluded, Common Lisp still makes for a great candi-
date language for game development.

While there are many more intricacies to the
Common Lisp ecosystem, we hope that this paper
gives a brief insight into some of the advantages



8 Acknowledgements 6

and challenges present when working in a full stack
Common Lisp environment.

8 Acknowledgements

We would like to thank the very handsome and at-
tractive people that helped proofread this draft ;)

References

[1] Richard Brooksby and Nicholas Barnes. The
memory pool system. Unpublished paper, 2002.

[2] Nicolas Hafner. Object oriented shader compo-
sition using clos. In Proceedings of the 11th Eu-
ropean Lisp Symposium on European Lisp Sym-
posium, ELS2018. European Lisp Scientific Ac-
tivities Association, 2018. ISBN 9782955747421.

[3] Nicolas Hafner. Shader pipeline and effect en-
capsulation using clos. In ELS, pages 66–72,
2019.

[4] Robert Strandh. Fast generic dispatch for com-
mon lisp. In Proceedings of ILC 2014 on 8th In-
ternational Lisp Conference, pages 89–96, 2014.


	Introduction
	Related Works
	Modularity Through Mixins
	Conditions, Handlers, and Restarts
	Optimisation
	Garbage Collection
	Conclusion
	Acknowledgements

